Search results

1 – 8 of 8
Article
Publication date: 1 March 1992

E. Zakel, J. Simon, G. Azdasht and H. Reichl

Tape automated bonding (TAB) is a suitable technology for assembling ICs with a high number of l/Os. The gang bonding process usually applied requires increasing thermode forces…

Abstract

Tape automated bonding (TAB) is a suitable technology for assembling ICs with a high number of l/Os. The gang bonding process usually applied requires increasing thermode forces for chips with high lead counts and narrow tolerances regarding thermode parallelism and planarity. Due to the high bonding pressure, TC bonding of Au bumps to Au‐plated tapes becomes critical for these applications. In order to avoid damage to the pad structure an inner lead bonding (ILB) process with reduced pressure is required. A tape metallisation of 0.5–1.0 µm Sn is not sufficient for a significant reduction of thermode pressure. As an alternative, the application of an eutectic Au‐Sn cushion which is deposited on top of the bumps is presented. A modified bumping process was developed for the deposition of the solder bumps. Soldering of the Au‐Sn bumps to a Au‐plated tape was performed successfully by two techniques: thermode gang bonding and laser soldering. Bond parameters and tin layer thickness were optimised. Reliability investigations by thermal ageing were performed. The special metallurgical aspects of the system were investigated with a microprobe.

Details

Soldering & Surface Mount Technology, vol. 4 no. 3
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 1 January 1992

E. Zakel, G. Azdasht and H. Reichl

Tape Automated Bonding (TAB) is a modern technology which meets the requirements for micro‐connecting VLSI circuits. The limitations for gang bonding chips with high lead counts…

Abstract

Tape Automated Bonding (TAB) is a modern technology which meets the requirements for micro‐connecting VLSI circuits. The limitations for gang bonding chips with high lead counts and reduced pitches are increased bond forces and induced mechanical stress. Laser soldering is an alternative for such contacts. Because microjoining of surfaces occurs via thermal energy from the laser beam, no mechanical pressure is necessary. Due to the optical properties of the laser beam and the possibility to reduce the laser spot, soldering of small pitches is possible. The results of TAB inner lead bonding with a pulsed Nd:YAG laser are presented. Tapes with three metallisations (Sn, Ni‐Sn and Au) were laser soldered to bumps consisting of gold and gold‐tin. The pull strength of laser soldered TAB‐contacts was optimised by variation of laser power and reliability investigations were performed. The metallurgy of laser soldering is different and more critical to long term reliability than that of gang bonded ILB‐contacts, even if identical tape and bump materials are applied. An accumulation of eutectic 80/20 Au‐Sn solder in the bonded interface results in a strong degradation due to Kirkendall pore formation in the ternary Cu‐Sn‐Au system. The application of a tape with a diffusion barrier of Ni inhibits this effect. But during thermal ageing these contacts show a strong degradation of pull forces which is attributed to the formation of brittle intermetallic compounds of the elements Ni, Sn and Au in the contact area. Laser soldering of Au‐plated tapes to Au‐Sn solder bumps is possible. The contacts show optimal pull forces and a minimal degradation after thermal ageing. This is attributed to the formation of an intermetallic compound with a high stability. The Zeta phase acts as a diffusion barrier between the copper lead and the eutectic Au‐Sn solder.

Details

Microelectronics International, vol. 9 no. 1
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 1 August 1996

R. Aschenbrenner, E. Zakel, G. Azdasht**, A. Kloeser and H. Reichl

During the last few years an increasing number of flip‐chip (FC) interconnection technologies have emerged. While flip‐chip assembly offers many advantages compared with…

652

Abstract

During the last few years an increasing number of flip‐chip (FC) interconnection technologies have emerged. While flip‐chip assembly offers many advantages compared with conventional packaging techniques, several aspects prevent this technology from entering the high volume market. Among these are the availability of bumped chips and the costs of the substrates, i.e., ceramic substrates with closely matching coefficient of thermal expansion (CTE) to the chip, in order to maintain high reliability. Only recently, with the possibility of filling the gap between chip and organic substrate with an encapsulant, was the reliability of flip‐chips mounted on organic substrates significantly enhanced. This paper presents two approaches to a fluxless process, one based on soldering techniques using Au‐Sn metallurgy and the other on adhesive joining techniques. Soldering is performed with a thermode and with a laser based system. For both of these FC‐joining processes, alternative bump mettallurgies based on electroplated gold, electroplated gold‐tin, mechanical gold and electroless nickel gold bumps are applied.

Details

Soldering & Surface Mount Technology, vol. 8 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 April 1996

G. Azdasht, E. Zakel and H. Reichl

The advances in miniaturisation and ever increasing complexity of integrated circuitsfrequently mean an increase in the number of connections to a component with simultaneous…

174

Abstract

The advances in miniaturisation and ever increasing complexity of integrated circuits frequently mean an increase in the number of connections to a component with simultaneous reduction in pitch. For these emerging smaller contact geometries, micro‐laser connection technologies are required. The reliability of the connection plays a decisive rôle. The implementation and reproducibility of laser connections technology in micro‐electronics depend on good thermal contact between the two parts and high quality absorption of the material surface used. Laser energy can cause local melting due to overheating of the lead because of the low distance between lead and bump. This effect influences the reproducibility of the contacts. Even the slightest interruption in the thermal contact of the parts can cause non‐reproducibility of the contacts. Materials with a higher quality of absorption, for example Sn(32% ), can be soldered with a good level of reproducibility. This clearly differs from gold (4% ) or copper(7% ) surfaces. Due to the low absorption of these materials it is necessary to use a laser with a higher intensity to produce the same energy. Irregularities in the quality of absorption, laser instability and thermal contact can not guarantee reproducibility of the interconnections with this high laser intensity. The FPC (fibre push connection) system offers several solutions to the problems mentioned. This system enables the laser to be transported by fibre to the contact parts. The end piece of the fibre serves at the same time as a pushing unit. The advantage of this system is that the attenuation heat of the fibre end surface is also available for the connection. This improves the use of laser energy. As part of the laser energy at the end surface of the fibre is transformed into thermal energy, independently of the absorption quality of the material used, connection of a gold‐plated contact part is possible. By pressing the connecting parts with the tip of the fibre, optimal coupling is achieved. The reproducibility of different metallisations and the reliability of connections with a pitch below 100 μm are presented as well as further applications of this system.

Details

Soldering & Surface Mount Technology, vol. 8 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 March 1994

A. Mödl

Tape automated bonding (TAB) is a powerful technique for connecting fine‐pitch integrated components to the corresponding substrates. This paper describes the specific example of…

Abstract

Tape automated bonding (TAB) is a powerful technique for connecting fine‐pitch integrated components to the corresponding substrates. This paper describes the specific example of hot‐bar soldering TAB components with an outer lead bonding (OLB) pitch of 0.150 mm to FR‐4 printed wiring boards. The prerequisites to be taken into account, the outer lead bonding process parameters, the hot‐bar soldering results and recommendations are presented.

Details

Soldering & Surface Mount Technology, vol. 6 no. 3
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 1 April 1994

J. Nicolics and G. Hobler

Fast laser soldering processes are very attractive for the production of miniaturized interconnections with high reliability as they allow solder joint quality assurance during…

Abstract

Fast laser soldering processes are very attractive for the production of miniaturized interconnections with high reliability as they allow solder joint quality assurance during soldering. In order to evaluate the solder joint quality temporal changes of the temperature distribution inside the solder joint due to melting of the solder and wetting of the component and the pad metallizations must be well understood. In this paper we present thermal simulations of fast laser soldering processes taking the essential changes of the solder geometry into account. Moreover, we use a new relation for the calculation of the moment of wetting in dependence of the interface temperature. With this model the influence of the wettability of the pad and the component metallization and of the position of the laser beam on the temperature distribution inside the solder joint are investigated.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 13 no. 4
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 1 January 1992

B. Waterfield and Geoff Griffiths

At the Annual General Meeting of ISHM‐France, held on 12 June 1991, the following were elected:

Abstract

At the Annual General Meeting of ISHM‐France, held on 12 June 1991, the following were elected:

Details

Microelectronics International, vol. 9 no. 1
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 1 March 2003

Changqing Liu and David A. Hutt

The solder interconnection of components to printed circuit boards normally utilises a flux to enable the efficient removal of oxide layers from the metals to be joined. While…

Abstract

The solder interconnection of components to printed circuit boards normally utilises a flux to enable the efficient removal of oxide layers from the metals to be joined. While this produces a strong metallurgical bond, the flux residue left behind after the soldering process can be detrimental to the long‐term performance of the product. Therefore, after assembly, a cleaning process is often employed to remove the residue, however, this incurs extra financial and environmental costs. In this work, organic coatings have been used to preserve copper surfaces in an oxide free state, enabling fluxless soldering to take place. These coatings, if stored appropriately, were found to be effective in preventing the oxidation of copper for several weeks, however, they are readily displaced by the soldering process allowing the active copper surface to be wetted. Wetting balance testing and surface analysis have been used to assess the preservation of copper coupons following storage in air.

Details

Circuit World, vol. 29 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 8 of 8